Answer:
Height of the rocket be one minute after liftoff is 40.1382 km.
Step-by-step explanation:
![v(t)=-gt-v_e* \ln (m-rt)/(m)](https://img.qammunity.org/2020/formulas/physics/college/zbznzf9g8l3xsbydp4j4zq1chzi16vibau.png)
v = velocity of rocket at time t
g = Acceleration due to gravity =
![9.8 m/s^2](https://img.qammunity.org/2020/formulas/physics/middle-school/4hutybnf3d7owit4o1kwgvlbj31uph0s4s.png)
= Constant velocity relative to the rocket = 2,900m/s.
m = Initial mass of the rocket at liftoff = 29000 kg
r = Rate at which fuel is consumed = 170 kg/s
Velocity of the rocket after 1 minute of the liftoff =v
t = 1 minute = 60 seconds'
Substituting all the given values in in the given equation:
![v(60)=-9.8 m/s^2* 60 s-2,900m/s* \ln ((29,000 kg-170 kg/s* 60 s)/(2,9000 kg))](https://img.qammunity.org/2020/formulas/physics/college/qd3bkeaj89uurgjcq3fxeg59p73i7ftj6u.png)
![v(60) = 668.97 m/s](https://img.qammunity.org/2020/formulas/physics/college/nieir2yfoln5u7otvp5f0ljhvqtghfraf0.png)
Height of the rocket = h
![Velocity=(Displacement)/(time)](https://img.qammunity.org/2020/formulas/physics/college/hzky9nnhjjl9gc2yhfqlqr4im37hy33gxv.png)
![668.97 m/s=(h)/(60 s)](https://img.qammunity.org/2020/formulas/physics/college/z80fbcivlsg8ld3o6ucjxdx9rjofp60xjo.png)
![h=668.97 m/s* 60 s=40,138.2 m = 40.1382 km](https://img.qammunity.org/2020/formulas/physics/college/dn4slfcppvnzqxe1flmjw4uxjjzs9ix9wn.png)
Height of the rocket be one minute after liftoff is 40.1382 km.