Answer:
(1) 4.2 × 10⁻⁴ mol·L⁻¹; (2) 4.3 × 10⁻⁴ mol·L⁻¹; (3) The results agree.
Step-by-step explanation:
1. Exact solution using α
HA + H₂O ⇌ H₃O⁺ + A⁻
I/mol·L⁻¹: 0.010 0 0
C/mol·L⁻¹: -0.010α +0.010α +0.010α
E/mol·L⁻¹: 0.010(1-α) 0.010α 0.010α
![K_{\text{a}} = \frac{\text{[H$_(3)$O$^(+)$][A$^(-)$]}}{\text{[HA]}} = 1.8 * 10^(-5)](https://img.qammunity.org/2020/formulas/chemistry/college/o30hkcitlxi0477yf5mffm0oa7w7svbv9s.png)
![\begin{array}{rcl}\frac{\text{[H$_(3)$O$^(+)$][A$^(-)$]}}{\text{[HA]}}& = &1.8 * 10^(-5)\\\\ (0.010\alpha* 0.010\alpha )/(0.010(1-\alpha))& = &1.8 * 10^(-5)\\\\ 0.000100\alpha^(2) & = & 0.010(1-\alpha)*1.8 * 10^(-5) \\& = &(0.010-0.010\alpha) * 1.8 * 10^(-5)\\& = & 1.8 * 10^(-7) - 1.8 * 10^(-7)\alpha\\0.000100\alpha^(2) + 1.8 * 10^(-7)\alpha - 1.8 * 10^(-7)& = & 0\\\alpha^(2)+ 0.00180\alpha - 0.00180& = & 0\\\end{array}](https://img.qammunity.org/2020/formulas/chemistry/college/nbkd0yq9wrpanierq37vx755ry8abhc681.png)
a = 1; b = 0.00180; c = -0.00180
Solve using the quadratic formula
α = 0.041 536
[H₃O⁺] = 0.010× 0.0415 mol·L⁻¹ = 4.2 × 10⁻⁴ mol·L⁻¹
2. Approximate solution assuming x is negligible
HA + H₂O ⇌ H₃O⁺ + A⁻
I/mol·L⁻¹: 0.010 0 0
C/mol·L⁻¹: -x +x +x
E/mol·L⁻¹: 0.010 x x
![\begin{array}{rcl}\frac{\text{[H$_(3)$O$^(+)$][A$^(-)$]}}{\text{[HA]}}& = &1.8 * 10^(-5)\\\\ (x* x)/(0.010)& = &1.8 * 10^(-5)\\\\ x^(2) & = & 0.010*1.8 * 10^(-5) \\& = &1.8 * 10^(-7)\\x & = & \sqrt{1.8 * 10^(-7)}\\& = & \mathbf{4.3 * 10^(-4)}\\\end{array}](https://img.qammunity.org/2020/formulas/chemistry/college/9tnspevgwwzd7wtsgnz00szrdq7nkal9n6.png)
[H₃O⁺] = 0.010× 0.0415 mol·L⁻¹ = 4.3 × 10⁻⁴ mol·L⁻¹
3. Compare the results
The initial concentrations were known to two significant figures. The results agree to two significant figures ( ±1 unit in the second significant figure).