Answer:
The area of Rectangle with given vertices is 6 unit ²
Explanation:
Given points of vertices of rectangle as :
A = ( - 4, 0)
B = ( - 3 , 1)
C = ( 0 , - 2)
D = ( - 1 , - 3)
Now the measure of side AB =
![\sqrt{(x_2 - x_1)^(2) + (y_2 - y_1)^(2)}](https://img.qammunity.org/2020/formulas/mathematics/middle-school/h21lvdjwono1188z0utwckv84kfcrb2q4e.png)
So, AB =
![\sqrt{( - 3 + 4)^(2) + (1 - 0)^(2)}](https://img.qammunity.org/2020/formulas/mathematics/middle-school/wzio0466d8a628phesuw9kaq17syeoj7k7.png)
AB =
unit
The measure of side BC =
![\sqrt{(x_2 - x_1)^(2) + (y_2 - y_1)^(2)}](https://img.qammunity.org/2020/formulas/mathematics/middle-school/h21lvdjwono1188z0utwckv84kfcrb2q4e.png)
BC =
BC = 3
unit
The measure of side CD =
![\sqrt{(x_2 - x_1)^(2) + (y_2 - y_1)^(2)}](https://img.qammunity.org/2020/formulas/mathematics/middle-school/h21lvdjwono1188z0utwckv84kfcrb2q4e.png)
CD =
![\sqrt{( - 1 - 0)^(2) + ( - 3 + 2)^(2)}](https://img.qammunity.org/2020/formulas/mathematics/middle-school/4q4p5v0srj7pfg5xt66faczd9bs5705i8k.png)
CD =
unit
The measure of side DA =
![\sqrt{(x_2 - x_1)^(2) + (y_2 - y_1)^(2)}](https://img.qammunity.org/2020/formulas/mathematics/middle-school/h21lvdjwono1188z0utwckv84kfcrb2q4e.png)
DA =
DA = 3
unit
So, the measure of side AB = The measure of side CD =
unit
And The measure of side BC = The measure of side DA = 3
unit
So, Let Length = AB = CD
And Width = BC = DA
∴ The area of Rectangle = Length × Width unit²
Or, The area of Rectangle = AB × BC
So, The area of Rectangle =
unit × 3
unit
∴ The area of Rectangle = 6 unit ²
Hence The area of Rectangle with given vertices is 6 unit ² Answer