Answer:
![m\angle CDB=90\\m\angle CBD=90-\alpha\\m\angle BCD=\alpha\\\\m\angle CDA=90\\m\angle CAD=\alpha\\m\angle ACD=90-\alpha](https://img.qammunity.org/2020/formulas/mathematics/middle-school/f0luann6hnfokruo0zezfiamssu6zv3cpv.png)
Explanation:
The triangles are drawn below.
CD is perpendicular to AB as CD is height to AB.
Therefore, angles
°
So, triangles ΔCBD and ΔCAD are right angled triangles.
Now, from the right angled triangle ΔABC,
![m\angle A+m\angle B =90\\\alpha+m\angle B=90\\m\angle B=90-\alpha](https://img.qammunity.org/2020/formulas/mathematics/middle-school/ez4h1i1e75yw3n8sffgfarfljok6k6ibof.png)
From ΔCBD,
is same as
.
So,
![m\angle CBD=90-\alpha](https://img.qammunity.org/2020/formulas/mathematics/middle-school/lhb42u60c2nnztujkom7oku5wj0gz53b39.png)
![m\angle BCD+m\angle BDC =90\\m\angle BCD+90-\alpha=90\\m\angle BCD=\alpha](https://img.qammunity.org/2020/formulas/mathematics/middle-school/k9z6w3iagh1cekfqguagfdg3uj6yybreni.png)
Now, from ΔCAD,
is same as
![m\angle A](https://img.qammunity.org/2020/formulas/mathematics/middle-school/mb6hwwix4etk3h1oz860qtoc8hp24fken9.png)
So,
![m\angle CAD=\alpha](https://img.qammunity.org/2020/formulas/mathematics/middle-school/42gvvluertcca3b85ufdq246ksog7dm538.png)
![m\angle CAD+m\angle ACD =90\\\alpha+m\angle ACD=90\\m\angle ACD=90-\alpha](https://img.qammunity.org/2020/formulas/mathematics/middle-school/76n99uh9xdflx5htgvdpxvopeovxzee65p.png)
Hence, the unknown angles of both the triangles are:
![m\angle CDB=90\\m\angle CBD=90-\alpha\\m\angle BCD=\alpha\\\\m\angle CDA=90\\m\angle CAD=\alpha\\m\angle ACD=90-\alpha](https://img.qammunity.org/2020/formulas/mathematics/middle-school/f0luann6hnfokruo0zezfiamssu6zv3cpv.png)