469,472 views
13 votes
13 votes
Factorize the equation

Factorize the equation-example-1
User Louielouie
by
2.9k points

1 Answer

13 votes
13 votes

Answer:


√(x^2+2)\left(x^2+x+2\right)^2

Explanation:

Given equation:


(x^2+2)^{(5)/(2)}+2x(x^2+2)^{(3)/(2)}+x^2√(x^2+2)


\textsf{Rewrite the exponents }(5)/(2) \textsf{ as } \left((1)/(2) \cdot 5\right)\textsf{ and }(3)/(2) \textsf{ as }\left((1)/(2) \cdot 3\right):


\implies (x^2+2)^{(1)/(2) \cdot 5}+2x(x^2+2)^{(1)/(2)\cdot 3}+x^2√(x^2+2)


\textsf{Apply exponent rule} \quad a^(bc)=(a^b)^c:


\implies \left((x^2+2)^{(1)/(2)}\right)^5+2x\left((x^2+2)^{(1)/(2)}\right)^3+x^2√(x^2+2)


\textsf{Apply exponent rule} \quad a^{(1)/(2)}=√(a):


\implies \left(√(x^2+2)\right)^5+2x\left(√(x^2+2)\right)^3+x^2√(x^2+2)

Factor out
√(x^2+2) from each of the three terms:


\implies √(x^2+2)\left[\left(√(x^2+2)\right)^4+2x\left(√(x^2+2)\right)^2+x^2\right]


\textsf{Factor the expression in the parentheses using} \quad a^2+2ab+b^2=(a+b)^2.


\textsf{Let }a=\left(√(x^2+2)\right)^2 \textsf {and }b=x:


\implies √(x^2+2)\left(\left(√(x^2+2)\right)^2+x\right)^2


\textsf{Apply exponent rule} \quad √(a^2)=a:


\implies √(x^2+2)\left(x^2+2+x\right)^2


\implies √(x^2+2)\left(x^2+x+2\right)^2

User Garrows
by
2.3k points