Answer:
P( The distance is at most 100 m) = 0.7499263989
P( The distance is at most 200 m) = 0.937463194
Explanation:
For the banner-tailed Kangaroo rats, X has an exponential distribution with parameter
= 0.01386
So, probability distribution of X is given by,
=
![\lambda * {e^(-(\lambda * x))}](https://img.qammunity.org/2020/formulas/mathematics/college/sjp9g4zz2rxvpqeffadkw2yg7f9kn3992n.png)
for 0 ≤ x < ∞ where
= 0.01386
= 0 otherwise
so,
P( X ≤ 100) =
![\int_(0)^(100)(\lambda * {e^(-(\lambda * x))})dx](https://img.qammunity.org/2020/formulas/mathematics/college/rh7ckmx34j4gqn46xp7af52np1njvfpni0.png)
=
----------------(2)
=1 -
![e^(- 100 * 0.01386)}](https://img.qammunity.org/2020/formulas/mathematics/college/ihisgncv4hnulh13lxv82ju553uoxhhykf.png)
= 0.7499263989
so , P(X ≤ 200)
= 1 -
![e^(- 200 * 0.01386)}](https://img.qammunity.org/2020/formulas/mathematics/college/qk07oc2mju9c9qic75c2cnx5cwem6nkhgk.png)
= 0.937463194
=