Answer:
The dimensions of the frame are 15 in x 13 in
Explanation:
Let
x ----> the length of the picture
y ----> the width of the picture
we know that
-----> equation A
The area of the picture, including the frame is
![A=(x+6)(y+6)](https://img.qammunity.org/2020/formulas/mathematics/high-school/1ctzutwmu38qjz1bp4uhfwoyz38ekzm8qt.png)
![A=195\ in^2](https://img.qammunity.org/2020/formulas/mathematics/high-school/7tohsee4prv4mplmw02wt0yj4jmmnq8z4v.png)
so
----> equation B
substitute equation A in equation B
![195=(2+y+6)(y+6)](https://img.qammunity.org/2020/formulas/mathematics/high-school/poe2dxutqx84xjn8sk4crb8sh9x60of3jt.png)
solve for y
![195=(y+8)(y+6)\\y^2+6y+8y+48=195\\\\y^2+14y-147=0](https://img.qammunity.org/2020/formulas/mathematics/high-school/q417o1tgbp1k7zs6wn6pehteu8c7hrlhbu.png)
solve the quadratic equation by graphing
The solution is y=7 in
see the attached figure
Find the value of x
![x=2+7=9\ in](https://img.qammunity.org/2020/formulas/mathematics/high-school/8xvalo7ejfssq7qgqz1gpwuyjgfm15s7w9.png)
Find the dimensions of the frame
![x+6=9+6=15\ in](https://img.qammunity.org/2020/formulas/mathematics/high-school/1leud4dnitw232dieido5gl4uermybfbsz.png)
![y+6=7+6=13\ in](https://img.qammunity.org/2020/formulas/mathematics/high-school/u6ajnhxtinn2mxzgfpqmehuesbzszoum3q.png)
therefore
The dimensions of the frame are 15 in x 13 in