Answer:
The solution to the equation
is
![\mathbf{x=-8}](https://img.qammunity.org/2022/formulas/mathematics/college/ject38dunk1po2f6m3tmhdtpur819z58kh.png)
Option A is correct option.
Explanation:
What is the solution to the equation
![(1)/(4)x+2=(-5)/(8)x-5](https://img.qammunity.org/2022/formulas/mathematics/college/b4qumaajuyblcgiv59kok962l4wt71lqkv.png)
Solving the equation
![(1)/(4)x+2=(-5)/(8)x-5](https://img.qammunity.org/2022/formulas/mathematics/college/b4qumaajuyblcgiv59kok962l4wt71lqkv.png)
Subtracting 2 on both sides
![(1)/(4)x+2-2=(-5)/(8)x-5-2\\(1)/(4)x=(-5)/(8)x-7](https://img.qammunity.org/2022/formulas/mathematics/college/qryjw930k97qpgk6xat8fz15mhejnkyxju.png)
Adding 5/8x on both sides
![(1)/(4)x+(5)/(8)x=(-5)/(8)x-7+(5)/(8)x\\(2x+5x)/(8)=-7 \\(7x)/(8)=-7](https://img.qammunity.org/2022/formulas/mathematics/college/nu88ktpoxnbkyxyjw9lvq7o0gkpluq5x4t.png)
Multiply both sides by 8/7
![(7x)/(8)* (8)/(7)=-7 * (8)/(7)\\x=-8](https://img.qammunity.org/2022/formulas/mathematics/college/ybw5p5jgqlkpyzlxmzj2fhhsg4kecu9g5k.png)
So, we get x = -8
The solution to the equation
is
![\mathbf{x=-8}](https://img.qammunity.org/2022/formulas/mathematics/college/ject38dunk1po2f6m3tmhdtpur819z58kh.png)
Option A is correct option.