The required equation is y = x + 2
Solution:
Given three points are (1,3) (3,5) (5,7)
A quadratic equation for three points is given by
![y = ax^2 + bx + c \rightarrow (1)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/xezp2eqx7vg5anld5b4iff8s588zb0rp0x.png)
Assume the point 1,3 and substitute in (1)
![\Rightarrow 3= a + b + c \rightarrow (2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/2odnjp0t0kyfim1s689bta4qzd4894p4w6.png)
Let us substitute 3,5 in (1)
Let us substitute 5,7 in (1)
Subtracting 2 and 3
![\Rightarrow 9a + 3b + c = 5 - ( a+ b+ c = 3)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/d8xfug02xlrdnbnqw3g37a675ug1cr6uyb.png)
![\Rightarrow 4a + b = 1](https://img.qammunity.org/2020/formulas/mathematics/middle-school/t34zbih7bnpw15g7urscoiw89hxzkzi0bb.png)
![\Rightarrow b = 1-4a](https://img.qammunity.org/2020/formulas/mathematics/middle-school/tws7vh67bhe35ml05px1fb8fk34r0m0yxx.png)
Subtracting 4 and 3
![\Rightarrow 16a + 2b = 2 \rightarrow (5)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/5yqgrco27e1vbw0mf4802oe5m58es5zrzk.png)
Substituting b in 5,
![\Rightarrow 8a = 0](https://img.qammunity.org/2020/formulas/mathematics/middle-school/e9pxosnv7xbeqesq6322amwt131sbnkrae.png)
![\Rightarrow a = 0; \ b = 1- 4(0) = 1](https://img.qammunity.org/2020/formulas/mathematics/middle-school/ti6nsxk1dnc78t3os925ggngrmf7wv4aan.png)
![\Rightarrow b = 1 \\\\From \ 2, a + b + c =3](https://img.qammunity.org/2020/formulas/mathematics/middle-school/xvqfihih6bcqih5zi8xx4hrm4skocb4xww.png)
![\Rightarrow 0+1+c =3](https://img.qammunity.org/2020/formulas/mathematics/middle-school/gn67zi65jngmvt91h0jhs5p8vywxfbqxqy.png)
![\Rightarrow c = 2](https://img.qammunity.org/2020/formulas/mathematics/middle-school/aikar7ig3dynq03pve808ce7smf76v9ved.png)
Substituting a, b, c in 1 we get the quadratic equation
![y = x + 2](https://img.qammunity.org/2020/formulas/mathematics/middle-school/3oxgdbbp71unfcdmz56z19yzeaazll3w52.png)