Answer:
The coordinates of
![P = (x,y) = (-(3)/(2) , -(3)/(2))](https://img.qammunity.org/2020/formulas/mathematics/middle-school/nievf0ea7lcpo6fiqerc0ww06kg8ixsqre.png)
Explanation:
Coordinates of A= (1,6) and B = (-2,-3)
AP:PB = 5:1
Let the coordinates of P =(x,y)
Now, by SECTION FORMULA:
If m1: m2 is the ratio between two segments, then the coordinate of point is given as
![(x,y) = ((m1x_2+ m2x_1)/(m1+m2) , (m1y_2+ m2y_1)/(m1+m2) )](https://img.qammunity.org/2020/formulas/mathematics/middle-school/u6ik4n8pfs7c0q93osdpc9pewu7tn1fo7m.png)
Similarly here, (x1, y1) = (1,6) , (x2, y2) = (-2,-3) and m1: m2 = 5: 1
Putting all values in equation, we get:
![(x,y) = ((5(-2)+ 1(1))/(5+1) , (5(-3)+1(6))/(5+1) )](https://img.qammunity.org/2020/formulas/mathematics/middle-school/xwtia49cvrqq9op93lqqltyyb0n46jkiap.png)
or,
![(x,y) = ((-10 + 1)/(6) , (-15 + 6)/(6) ) = ((-9)/(6) , (-9)/(6) )](https://img.qammunity.org/2020/formulas/mathematics/middle-school/28gu8basfa7eavrenelk304u9xvq8hapy9.png)
Hence, the coordinates of
![P = (x,y) = (-(3)/(2) , -(3)/(2))](https://img.qammunity.org/2020/formulas/mathematics/middle-school/nievf0ea7lcpo6fiqerc0ww06kg8ixsqre.png)