Answer:
![= (2a + b -c) (2a + b+c)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/yjy5qc61ohfiix05inb1xm45k9z7jfzmwn.png)
Explanation:
Here, the given expression is
![4a^(2) + b^(2) - c^(2) + 4ab](https://img.qammunity.org/2020/formulas/mathematics/middle-school/cgkr8kuz3um6lmo4x6j33sokczvyvl2mbw.png)
or, the given expression can be written as
![(4a^(2) + b^(2) + 4ab ) - c^(2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/u294z1ut4gvu8x7p33x54d875dd0qf7p60.png)
Now, by ALGEBRAIC IDENTITY:
![(x+y)^(2) = x^(2) + y^(2) + 2xy](https://img.qammunity.org/2020/formulas/mathematics/middle-school/cfyit3p4sjbfmxcaw9raa1xxzgp45a4334.png)
So, similarly here,
![(2a +b){2} = 4a^(2) + b^(2) + 4ab](https://img.qammunity.org/2020/formulas/mathematics/middle-school/pfmpqws4tk57juardrasj44ga5zbxi3m7e.png)
Hence, on simplification, the expression
![(4a^(2) + b^(2) + 4ab ) - c^(2) = (2a + b)^(2) - c^(2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/zdkrm4qgua3qpmwurwch2xdsj9s5dtzbpp.png)
Now, by ALGEBRAIC IDENTITY:
![(x +y)(x-y) = x^(2) - y^(2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/1gsua1jm0h152r7t2m1fz2yvnw0wc0jiat.png)
So, similarly
![(2a + b)^(2) - c^(2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/jlsse6c2ds5y54r1ubakyth99c6i0lwiwc.png)
![= (2a + b -c) (2a + b+c)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/yjy5qc61ohfiix05inb1xm45k9z7jfzmwn.png)
Hence, the given expression is factorized as:
![= (2a + b -c) (2a + b+c)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/yjy5qc61ohfiix05inb1xm45k9z7jfzmwn.png)