Answer:
T = 23121N
Step-by-step explanation:
To solve this problem we need to define our variables,
We start with the dates from the jet, so
![v_(jet) = 180 m/s](https://img.qammunity.org/2020/formulas/physics/college/r91795twh33ux853vu62s669fzi3iz58zc.png)
(to the air intake)
(rate fuel burn)
= 490 m/s
First we calculate the rate of mass change,
![(dM_T)/(dt) = 70 kg/s + 2.9 kg/s](https://img.qammunity.org/2020/formulas/physics/college/15e0iyxvx137ql029zoli7f51qq1kxxo0x.png)
![(dM_T)/(dT)= 72.9 kg/s](https://img.qammunity.org/2020/formulas/physics/college/e2kwtf8fkzd8esrazzk0boqpnyorgnlj1e.png)
So we can now calculate the thrust on the rocket,
![T = (dM)/(dt)u - (dMa)/(dt)v](https://img.qammunity.org/2020/formulas/physics/college/xi8gpve5m6ho0aefxfyxn1fogje5eo726a.png)
![T = (72.9 kg/s)(490 m/s)-(70 kg/s)(180 m/s)](https://img.qammunity.org/2020/formulas/physics/college/zbt0flzspp3firy0rttz95yk9ce2ldwfl1.png)
![T = 23121N](https://img.qammunity.org/2020/formulas/physics/college/txpqlobvv3nl64nu9glkw8got8rqzvx5xo.png)
To calculate the power of the rocket we need the equation,
![P = vT\\P = (180 m/s)(23121 N)\\P = 4.16*106 W\\P = 4.16 MW](https://img.qammunity.org/2020/formulas/physics/college/l09nkesjyd5x47so9ln5lk5rx7b8hq7qr6.png)