Answer: 471
Explanation:
Given : The population standard deviation is estimated to be $500.
i.e .
![\sigma=\$500](https://img.qammunity.org/2020/formulas/mathematics/college/2trvwr0hakgzh4ijpbrlsw1f1tx04n93vl.png)
If a 97 percent confidence interval is used and an interval of $100 is desired.
i.e. Margin of error = half of interval
i.e. E=
![(\$100)/(2)=\$50](https://img.qammunity.org/2020/formulas/mathematics/college/qc5mrqcwnf2z885vtytln10yhfhmj0lsxe.png)
Significance level : 1-0.97=0.03
Critical value for 97% confidence interval :
![{z_(\alpha/2)=z_(0.03/2)=2.17](https://img.qammunity.org/2020/formulas/mathematics/college/d59deb9gn49o449vpvqoy8b3pnv9y8l36j.png)
Formula for sample size :
![n=((z_(\alpha/2)\ \sigma)/(E))^2\\\\=((2.17*500)/(50))^2\\\\=470.89\approx471](https://img.qammunity.org/2020/formulas/mathematics/college/klnhxgntv62z2efjt1n8ogbczejf44hqjz.png)
Hence, at-least 471 cardholders should be sampled.