Answer:
t=62 s
Step-by-step explanation:
Applying the conservation of linear momentum formula:
![(m1+m2)*v_(o1)=m1*v_(f1)+m2*v_(f2)](https://img.qammunity.org/2020/formulas/physics/high-school/bu09sppugwsuyz2vqhzobcldssr40nyc77.png)
the initial velocity is zero, we can calculate the man's mass using the gravitational force formula:
![F_g=m.g\\\\m=(706N)/(9.81)\\\\m=72.0kg](https://img.qammunity.org/2020/formulas/physics/high-school/n0wy35lckc9pydq9np7zfciu6ssbli6xmy.png)
now:
![m*v_(f1)=-m_b*v_b\\\\V_(f1)=-(m_b*v_b)/(m)\\\\V_(f1)=-(1.2kg*8.0m/s)/(72.0kg)\\\\V_f=-0.13m/s](https://img.qammunity.org/2020/formulas/physics/high-school/9kucj0tuhfmo0xsz1u06dd9ot541calch3.png)
That is 0.13m/s due south.
because there is no friction, the man will maintain a constant velocity, so:
![d=v*t\\t=(d)/(v)\\t=(8m)/(0.13m/s)\\\\t=62s](https://img.qammunity.org/2020/formulas/physics/high-school/abz5fyto6dmrszet5g1mlibr42pw0so9l2.png)