Answer:
The roots of the the given equation are +3i or -3i.
Solution:
Given,
![3x^2+27=0](https://img.qammunity.org/2020/formulas/mathematics/middle-school/1mhof6eeujnidrlvly5uhh3zoyyfn9rvcs.png)
First of all compare the given equation with the standard form, i.e
On comparing,
a=3
b=0
c=27
According to the quadratic formula,
![x = \frac{-b \pm \sqrt{b^(2)-4 a c}}{2 a}](https://img.qammunity.org/2020/formulas/mathematics/middle-school/35dgts55cbsvvam2nx842ch0kujqo96w8x.png)
![b^2-4ac= 0-4*3*27=-324](https://img.qammunity.org/2020/formulas/mathematics/middle-school/64a4pyp22n0c4xng8fkfpdmj80lwn6ritk.png)
As
comes out to be negative, the given equation does not have any real roots,
![\sqrt {b^2-4ac}= √((-324))](https://img.qammunity.org/2020/formulas/mathematics/middle-school/f5ibh0d25h8d7gucqqf210g3gktgo02gzg.png)
![\sqrt {b^2-4ac}= √((324* -1))](https://img.qammunity.org/2020/formulas/mathematics/middle-school/pij2cma4gs3eky5oi2v4xw3x1x7o973z1x.png)
![\Rightarrow √(324)* √(-1)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/yzo4k5xtmjhd9b076mp79czf4c7ez8a4pe.png)
Root of 324 is 18,
(Because root of -1 is i)
![x=((-0+-18i))/(2*3)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/a4o7bvruu7izrzlobh73hxp6trn3lt9fim.png)
![x=(\pm18i)/(6)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/p5iy003regwsduoz9yen7xm6o0i960drl2.png)
![x=(+18)/(6) \ or (-18)/(6)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/ez8afosp70pae7mcib7nyajz710i6ly6sj.png)
On dividing 18 and 6 we get,
![\therefore x=+3i \ or -3i](https://img.qammunity.org/2020/formulas/mathematics/middle-school/tye4xshrv33q2jtfsqdpa5g9hf7u1a0nll.png)