173,191 views
32 votes
32 votes
If cos 2A = 7 /9 , show that SinA = 1/3​

If cos 2A = 7 /9 , show that SinA = 1/3​-example-1
User Glenn Doten
by
2.6k points

2 Answers

14 votes
14 votes

Answer:

see explanation

Explanation:

using the identity

cos2A = 1 - 2sin²A , then

1 - 2sin²A =
(7)/(9) ( subtract 1 from both sides )

- 2sin²A = -
(2)/(9) ( divide both sides by - 2 )

sin²A =
(1)/(9) ( take square root of both sides )

sinA =
\sqrt{(1)/(9) } =
(1)/(3)

User Maksadbek
by
2.6k points
17 votes
17 votes

Hello There ~


\longrightarrow \sf \cos(2a) = (7)/(9)


\longrightarrow \sf1 - 2 \sin {}^(2) (a) = (7)/(9)

[ cos 2a = 1 - 2sin²a ]


\longrightarrow \sf 2{sin}^(2) (a) = 1 - (7)/(9)


\longrightarrow \sf2 {sin}^(2) (a) = (9 - 7)/(9)


\longrightarrow \sf2 {sin}^(2) (a) = (2)/(9)


\longrightarrow \sf {sin}^(2) (a) = (1)/(9)


\longrightarrow \sf {sin(a) = (1)/(3) }

Hope it helps -',...,'-

User Blankman
by
3.0k points