Answer:
![2.1* 10^(-12) c](https://img.qammunity.org/2020/formulas/physics/college/7ijqodz2xnsg4psm2u6q3hsfhywh3al6u0.png)
Step-by-step explanation:
We are given that
Surface area of membrane=
![5.3* 10^(-9) m^2](https://img.qammunity.org/2020/formulas/physics/college/wkug4vbfc6pqcs4n97h1m0a9dcymj3eb8c.png)
Thickness of membrane=
![1.1* 10^(-8) m](https://img.qammunity.org/2020/formulas/physics/college/wo22i3k0wynwu2ri7wrpx6lyi9w6geecld.png)
Assume that membrane behave like a parallel plate capacitor.
Dielectric constant=5.9
Potential difference between surfaces=85.9 mV
We have to find the charge resides on the outer surface of membrane.
Capacitance between parallel plate capacitor is given by
![C=(k\epsilon_0 A)/(d)](https://img.qammunity.org/2020/formulas/physics/college/1nkmb6sr8dovbji1tr3movcr0gq16egdn7.png)
Substitute the values then we get
Capacitance between parallel plate capacitor=
![(5.9* 8.85* 10^(-12)* 5.3* 10^(-9))/(1.1* 10^(-8))](https://img.qammunity.org/2020/formulas/physics/college/4hk8tkad5o3nsoovxutvcu4v39kyz1mfj3.png)
![C=0.25* 10^(-12)F](https://img.qammunity.org/2020/formulas/physics/college/7zxpy2wpks7ljpe78pwzj6hy9zjyzir761.png)
V=
![85.9 mV=85.9* 10^(-3)](https://img.qammunity.org/2020/formulas/physics/college/dfy8rwyhq2ta372aprjt4pb3ef5ufnf1uz.png)
![Q=CV](https://img.qammunity.org/2020/formulas/physics/high-school/27tsz4ffeizlk1nstju0abbk73c1nujfwj.png)
![Q=0.25* 10^(-12)* 85.9* 10^(3)=2.1* 10^(-12) c](https://img.qammunity.org/2020/formulas/physics/college/t7ko6hoi0fufywro64uliy5soiqsido6cn.png)
Hence, the charge resides on the outer surface=
![2.1* 10^(-12) c](https://img.qammunity.org/2020/formulas/physics/college/7ijqodz2xnsg4psm2u6q3hsfhywh3al6u0.png)