Answer:
The break-even sales amounts is 36 or 224.
Explanation:
Consider the provided function.
![P= -5x^2 + 13x - 4](https://img.qammunity.org/2020/formulas/mathematics/high-school/a2gw980lp7bn4nmvxbvz5izvqycrmb00z0.png)
Where x is the number of televisions sold (in hundreds) and P is the profit.
We need to calculate the break-even sales amounts.
the break-even sales amounts is the sales amounts that result in no profit or loss.
That means substitute P=0 and solve for x.
![-5x^2 + 13x - 4=0](https://img.qammunity.org/2020/formulas/mathematics/high-school/z2yhru3y32yzivhbzsexn69ofrunq2swlz.png)
![5x^2-13x+4=0](https://img.qammunity.org/2020/formulas/mathematics/high-school/x1g1engim6xh7h4zfelupn6upjoy4v0idh.png)
![\mathrm{For\:a\:quadratic\:equation\:of\:the\:form\:}ax^2+bx+c=0\mathrm{\:the\:solutions\:are\:}\\x_(1,\:2)=(-b\pm √(b^2-4ac))/(2a)](https://img.qammunity.org/2020/formulas/mathematics/high-school/3wsti4y55yrd8cjkg40ucw3qyggvgy02pj.png)
Substitute a=4, b=-13 and c=4 in above formula.
![x_(1,\:2)=(-\left(-13\right)\pm √(\left(-13\right)^2-4\cdot \:5\cdot \:4))/(2\cdot \:5)](https://img.qammunity.org/2020/formulas/mathematics/high-school/27a15u7f37s9zk8etasw1u0sj688kandko.png)
![x_(1,\:2)=(13\pm√(169-80))/(10)](https://img.qammunity.org/2020/formulas/mathematics/high-school/vhs7wt7uumwz1luabu6i238r1r69g5ehdu.png)
![x_(1,\:2)=(13\pm√(89))/(10)](https://img.qammunity.org/2020/formulas/mathematics/high-school/vztv71y2brbsgctvdbh7egypoezu9wvhu2.png)
![x=(13+√(89))/(10),\:x=(13-√(89))/(10)\\x\approx2.243, \ or\ x\approx 0.357](https://img.qammunity.org/2020/formulas/mathematics/high-school/b7e16l6fvje6561qlx0nkospbxfhhwe5i5.png)
Therefore, the break-even sales amounts is 36 or 224.