Answer:
a) 2
b) 5
c) -1
d) x
Explanation:
We know the properties of log function as:
1) log(AB) = log(A) + log(B)
2)

3) log(aᵇ) = b × log(a)
also,
4)

Given:
a. y = log₂(2²)
thus, using 3
y = 2log₂(2)
or using 4
y = 2 ×

or
y = 2 × 1 = 2
b. y = log₂(2⁵)
thus, using 3
y = 5 × log₂(2)
or using 4
y = 5 ×

or
y = 5 × 1 = 5
c. y = log₂(2⁻¹)
thus, using 3
y = -1 × log₂(2)
or using 4
y = -1 ×

or
y = -1 × 1 = -1
d. y = log₂(2ˣ)
thus, using 3
y = x × log₂(2)
or using 4
y = x ×

or
y = x × 1 = x