151k views
4 votes
Factor by grouping 7c^4 - 4c^3 + 28c^2 - 16c

User Eftpotrm
by
8.6k points

1 Answer

1 vote

Answer:

The factor by grouping 7c^4 - 4c^3 + 28c^2 - 16c is
\left(c^(2)+4\right)(7 c-4) c

Solution:


\text { Given, expression is } 7 \mathrm{c}^(4)-4 \mathrm{c}^(3)+28 \mathrm{c}^(2)-16 \mathrm{c}

We have to factor the given expression by grouping.


\text { Now, } 7 c^(4)-4 c^(3)+28 c^(2)-16 c


\rightarrow 7 c^(4)+28 c^(2)-4 c^(3)-16 c

By grouping the terms we get,


\rightarrow\left(7 c^(4)+28 c^(2)\right)-\left(4 c^(3)+16 c\right)

By taking the common terms out from groups,


\rightarrow 7 c^(2)\left(c^(2)+4\right)-4 c\left(c^(2)+4\right)


\text { Taking } \mathrm{c}^(2)+4 \text { as common }


\rightarrow\left(c^(2)+4\right)\left(7 c^(2)-4 c\right)


\Rightarrow\left(c^(2)+4\right)(7 c-4) c

Hence, the factorization of given expression is
\left(c^(2)+4\right)(7 c-4) c

User Jacxel
by
7.3k points