Answer:
The simplication of x-3÷4x^4-8x^3-18x^2+17x+3 is
![(1)/(\left(4 x^(3)+4 x^(2)-6 x-1\right))](https://img.qammunity.org/2020/formulas/mathematics/middle-school/6iqr5ibvdnnpy1etqopjntlqmplbxj8uw9.png)
Solution:
![\text { Given, expression is }(x-3) /\left(4 x^(4)-8 x^(3)-18 x^(2)+17 x+3\right)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/iv4i7ai4zoaaf32urapz8cu1gdc2ym7b46.png)
Now we have to simplify the given expression,
For that, we have to factorize the denominator.
![\text { So, } 4 x^(4)-8 x^(3)-18 x^(2)+17 x+3](https://img.qammunity.org/2020/formulas/mathematics/middle-school/sqg7387kws9d2b1zvc86lvgdoixfggn5ug.png)
![\Rightarrow 4 x^(4)+\left(-12 x^(3)+4 x^(3)\right)+\left(-12 x^(2)-6 x^(2)\right)+(18 x-x)+3](https://img.qammunity.org/2020/formulas/mathematics/middle-school/qxujicc7nhb89w8m64k26stoncxuz90bzj.png)
By grouping terms we get,
![\rightarrow\left(4 x^(4)-12 x^(3)\right)+\left(4 x^(3)-12 x^(2)\right)-\left(6 x^(2)-18 x\right)-(x-3)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/vjecasfa50q49uwtma9cl2hkg6juk8eper.png)
By taking the common terms,
![\begin{array}{l}{\rightarrow 4 x^(3)(x-3)+4 x^(2)(x-3)-6 x(x-3)-(x-3)} \\\\ {\rightarrow(x-3)\left(4 x^(3)+4 x^(2)-6 x-1\right)}\end{array}](https://img.qammunity.org/2020/formulas/mathematics/middle-school/ba0r2teogoy9kiuei0svnflm95p0mptpsb.png)
![\begin{array}{l}{\text { Now, }(x-3) /\left(4 x^(4)-8 x^(3)-18 x^(2)+17 x+3\right) \rightarrow (x-3)/(\left(4 x^(4)-8 x^(3)-18 x^(2)+17 x+3\right))} \\\\ {\quad \rightarrow (x-3)/((x-3)\left(4 x^(3)+4 x^(2)-6 x-1\right))} \\\\ {\quad \rightarrow (1)/(\left(4 x^(3)+4 x^(2)-6 x-1\right))}\end{array}](https://img.qammunity.org/2020/formulas/mathematics/middle-school/rzw7v7xhrbp4j6r3575fmzn83vjitzhy04.png)
Hence, the simplified expression is
![(1)/(\left(4 x^(3)+4 x^(2)-6 x-1\right))](https://img.qammunity.org/2020/formulas/mathematics/middle-school/6iqr5ibvdnnpy1etqopjntlqmplbxj8uw9.png)