Answer:
k=2
Explanation:
We are given that
Line of f(x) passes through the points (-4,0) and (0,4).
Line of g(x) pass through the points (-2,0) and (0,4).
![g(x)=f(k\cdot x)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/oesdavsq4nnknwydyln9djitjmm6q6182p.png)
We have to determine the value of k.
![f(-4)=0](https://img.qammunity.org/2020/formulas/mathematics/middle-school/towjph5x4u21msokyikiq9gtnddboxfgmz.png)
![g(-2)=0](https://img.qammunity.org/2020/formulas/mathematics/middle-school/o7f0uvgu7a9cuzr2lvc03bxlyilntlhg9q.png)
slope of f(x)=
![m=(y_2-y_1)/(x_2-x_1)=(4-0)/(0+4)=1](https://img.qammunity.org/2020/formulas/mathematics/middle-school/bniggpvh8v8wrslpwk0zi4m2gwjc9f6cn6.png)
Equation of f(x) which is passing through the point (-4,0) with slope 1
![y-0=1(x+4)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/o5jh7rw7ym5ik8cm6833kkdmy8dofd74py.png)
By using slope-point form:
![y-y_1=m(x-x_1)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/lwv5ftdd36i4idvu50qxfdgwxhdby4wlt5.png)
![y=x+4](https://img.qammunity.org/2020/formulas/mathematics/high-school/7cb5benfco90m3i4p6llqzu8lrf96o7qdu.png)
![g(x)=f(kx)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/twpwmvj1i0aod4l24ud4hcbjzvnlgfhceb.png)
Replace x by kx
Equation of g(x)
![y=kx+4](https://img.qammunity.org/2020/formulas/mathematics/middle-school/dyji5f5t41i0y8fv88ndou8bswzfs90zbk.png)
Substitute x=-2
![g(-2)=-2k+4](https://img.qammunity.org/2020/formulas/mathematics/middle-school/k5ls0ss6c0zrqfizpr07o0v9wmkd03kz97.png)
![-2k+4=0](https://img.qammunity.org/2020/formulas/mathematics/middle-school/g6825u98t9unq3a65naohdjize7fo6762s.png)
![2k=4](https://img.qammunity.org/2020/formulas/mathematics/middle-school/9rness3bvdx3hfj7b1i4tzd0pwqwft4mz4.png)
![k=(4)/(2)=2](https://img.qammunity.org/2020/formulas/mathematics/middle-school/2lnk0rnyojvr505nxllou39udzk9n0785l.png)
Hence, the value of
![k=2](https://img.qammunity.org/2020/formulas/mathematics/middle-school/lejqpewggl3kub75as9q3md2o3vqda5vl6.png)