Answer:8540 kg-g/s
Step-by-step explanation:
Given
mass of blue car
![m_c=427 kg](https://img.qammunity.org/2020/formulas/physics/college/3p668zvkj5uxym5l8kga3fd7nr1up3bhfg.png)
velocity of blue car
![v_c=20 m/s](https://img.qammunity.org/2020/formulas/physics/college/qj7qtmbolpt10djmj6467y4h91ocid56g9.png)
mass of the truck
![m_t=1282 kg](https://img.qammunity.org/2020/formulas/physics/college/knkvbgx8azdxfnqvaip5x8hu6fkzfypb3y.png)
speed of truck
![v_t=13 m/s](https://img.qammunity.org/2020/formulas/physics/college/chjf3r0mhalr4bjzp3bkf0yhqdwel3cvth.png)
After collision they stick and lock together
Let v be the velocity of combined system at angle \theta from vertical
Conserving momentum in east direction
![m_c* v_c=(m_c+m_t)v\cos \theta](https://img.qammunity.org/2020/formulas/physics/college/tghc2oiyvg9mt48272qui05zcetx4q1xp5.png)
------1
Conserving Momentum in Y direction
![m_t* v_t=(m_c+m_t)v\sin \theta](https://img.qammunity.org/2020/formulas/physics/college/7oijwym95t49seaisth6m5dtu2m406nwvy.png)
-------2
squaring and then adding 1 & 2 we get
![(8540)^2+(16666)^2=(1709)^2\cdot v^2](https://img.qammunity.org/2020/formulas/physics/college/6cxp1lw7gkwncpffylys630bz874l60l05.png)
v=10.95 m/s
initial momentum of car
![=427* 20=8540 kg-m/s](https://img.qammunity.org/2020/formulas/physics/college/33tt1h0pbq6jwdgs407d7xwqy01v68l3d8.png)