Answer:
Explanation:
log3(x^2)-log3(x+4)=4
Log 3(x^2/x+4)=4 -Combine the logs
x^2/x+4 = 3^4 - Use the relationship Logb(y)=x =>b^x=y
x^2/x+4 = 81
x^2= 81^(x+4)
x^2=81x+324
x^2-81x-324=0
Solving for x using the property x=-b-/+[tex]\sqrt{x} b^2-4ac]/ 2a
=(81 ±√(81)^2-4^11^324)/2
= (81±√6561-1296)/2
=(81±88.63)/2
= (81+88.63)/2
=84.81