121k views
4 votes
In triangle ABC, angle A is three times as large as angle B, and also 16 degrees larger than angle C. Find the measure of each angle. (Show how you did it asap)​

User Just Rudy
by
5.6k points

1 Answer

6 votes

Answer:

A=84°

B=28°

C=68°

Explanation:

We know the following:

A=3B --> "angle A is three times as large as angle B"

A=C+16 --> "and also 16 degrees larger than angle C"

We can find ∠C by subtracting 16 from both sides from the above statement:

C=A-16

We know that in a triangle there are 180°, therefore we can write the following equation.

A+B+C=180°

1) Substitute 3B as A in the above equation:

3B+B+C=180°

2) Substitute A-16 as C in the above equation:

3B+B+A-16=180°

3) Substitute 3B as A in the above equation:

3B+B+3B-16=180°

4) Combine alike terms:

7B-16=180

5) Add 16 to both sides:

7B=196

6) Divide both sides by 7:

B=28°

Now, lets plug in 28° as B in the first equation we deduced:

A=3B --> A=3(28)

A=84°

Now, lets plug in 84° as A in the second equation we deduced:

A=C+16 --> 84=C+16

C=68°

User Jan Kuiken
by
6.3k points