Answer:
solved
Step-by-step explanation:
According to the question
T= 1130 N
N = m*g - T*sin(θ)
f= µN
Therefore frictional force f = µ*(m*g - 1130*sin(θ))
So the forces in the horizontal are T*cos(θ) - f = 0
1100*cos(θ) = µ*(m*g - 1100*sin(θ))
cos(θ) + µ×sin(θ) = µ×m×g/1100
to find the angle for maximum mass take the derivative of mass with respect to θ and set it to 0
So -sin(θ)*dθ + µ*cos(θ)*dθ = µ*g/1100*dm
so -sin(θ) + µ*cos(θ) = µ*g/1100*dm/dθ = 0
So sin(θ) = µ*cos(θ)
So tan(θ) = µ
therefore,


θ= 23.26°
b)Now using cos(θ) + µ×sin(θ) = µ×m×g/1130
we solve for m×g = W
W = 1100×(cos(θ) + µ×sin(θ))/(µ) = 1130×(cos(23.26) + 0.430×sin(23.26))/(0.430) = 1038.55 N