It's unclear what the planes are supposed to be, so I'll take
and
with
.
The cross sections are disks with diameter
, so each disk of thickness
has a volume of
![\frac{\pi(\csc x-\cot x)^2}4\Delta x](https://img.qammunity.org/2020/formulas/mathematics/high-school/1i0isz1p1cxzhlbcblu3h1y9fsec8otjen.png)
Then taking infinitesimally thin disks, we find the solid has a volume of
![\displaystyle\frac\pi4\int_a^b(\csc x-\cot x)^2\,\mathrm dx](https://img.qammunity.org/2020/formulas/mathematics/high-school/ff4vj0014ikqphohpz2rjv3f35c7rzvo2s.png)
Since
![(\csc x-\cot x)^2=2\csc^2x-2\csc x\cot x-1](https://img.qammunity.org/2020/formulas/mathematics/high-school/kc2z6ulb29a5pzscn7sg72iql88gqp0mc7.png)
and
![(\mathrm d(\csc x))/(\mathrm dx)=-\csc x\cot x](https://img.qammunity.org/2020/formulas/mathematics/high-school/8xv2cg11aqsb72t2ttqqew6ifzwnnasq37.png)
![(\mathrm d(\cot x))/(\mathrm dx)=-\csc^2x](https://img.qammunity.org/2020/formulas/mathematics/high-school/n77rd2oculgbdvwrq5c17ui4wc0bn6ptta.png)
it follows that the volume is
![\displaystyle\frac\pi4\left(-2\cot x+2\csc x-x\right)\bigg|_a^b](https://img.qammunity.org/2020/formulas/mathematics/high-school/zsxh2ifwnlgsj6a4wbj07trikkz3fzrrlw.png)
![=\frac\pi4(2(\cot a-\cot b)+2(\csc b-\csc a)+a-b)](https://img.qammunity.org/2020/formulas/mathematics/high-school/7nq9n58mjkfvnzls1ttp7ri58tvrybo7ny.png)
![=\frac\pi4\left(2\tan\frac b2-2\tan\frac a2+a-b\right)](https://img.qammunity.org/2020/formulas/mathematics/high-school/s3833cglhr1jw56rmublid1eqa16yiiyy6.png)