ANSWER:
The area of the triangle with vertices at (0, – 2), (8, – 2), and (9, 1) is 12 square units.
SOLUTION:
Given, vertices of the triangle are A(0, -2), B(8, -2) and C(9, 1).
We have to find the area of the given triangle.
We know that,
![\text { Area of triangle }=(1)/(2)\left(x_(1)\left(y_(2)-y_(3)\right)+x_(2)\left(y_(3)-y_(1)\right)+x_(3)\left(y_(1)-y_(2)\right)\right)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/tltqe2yi14exw452bapuhsu57yoeegejlm.png)
![\text { Where, }\left(x_(1), y_(1)\right),\left(x_(2), y_(2)\right),\left(x_(3), y_(3)\right) \text { are vertices of the triangle. }](https://img.qammunity.org/2020/formulas/mathematics/middle-school/n890p0blj6psvb8ubhhnxeink83ujlj6sk.png)
Here in our problem,
![\left(\mathrm{x}_(1), \mathrm{y}_(1)\right)=(0,-2),\left(\mathrm{x}_(2), \mathrm{y}_(2)\right)=(8,-2) \text { and }\left(\mathrm{x}_(3), \mathrm{y}_(3)\right)=(9,1)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/ywuayna8fuepjqj8v1wjk03xskftw40p84.png)
Now, substitute the above values in the formula.
![\text { Area of triangle }=(1)/(2)\left(x_(1)\left(y_(2)-y_(3)\right)+x_(2)\left(y_(3)-y_(1)\right)+x_(3)\left(y_(1)-y_(2)\right)\right)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/tltqe2yi14exw452bapuhsu57yoeegejlm.png)
![=(1)/(2)(0(-2-1)+8(1-(-2))+9(-2-(-2))](https://img.qammunity.org/2020/formulas/mathematics/middle-school/onwl0rezcpnglisukyc3omsisy8zsc83sl.png)
![=(1)/(2)(0+8(1+2)+9(2-2))](https://img.qammunity.org/2020/formulas/mathematics/middle-school/6ueke7by6ib98f77jgbuk6zqr9efbcbwxl.png)
![(1)/(2)(0 + 0 +24) = (24)/(12) = 2](https://img.qammunity.org/2020/formulas/mathematics/middle-school/jn88pubo6kkmvk9mu8nbsnsg22e55umby5.png)
Hence, the area of the triangle is 12 sq units.