ANSWER:
The area of the triangle with sides a=5, b=8 and c=11 is
![4 √(21) \text { square units. }](https://img.qammunity.org/2020/formulas/mathematics/middle-school/pgjrexe3zlqzcfgvwes8i47s948b3p2l2p.png)
SOLUTION:
Given, a = 5, b = 8, c = 11.
We need to find the area of the triangle with sides as given.
Let us find the area of triangle using heron’s formula:
![\begin{array}{l}{\text { Area }=\sqrt[2]{s(s-a)(s-b)(s-c)}} \\\\ {\text { Where } s=(a+b+c)/(2)}\end{array}](https://img.qammunity.org/2020/formulas/mathematics/middle-school/upuqdc9685crzwlpy0hw2hrne8tuqy6l7h.png)
Now, let us calculate value of s and put it in heron’s formula.
![s=(5+8+11)/(2)=(24)/(2)=12](https://img.qammunity.org/2020/formulas/mathematics/middle-school/7zb12juag4twuuj5wz0h62vn5vmf20qwyo.png)
Substitute s value in heron’s formula along with a, b, c values.
![\begin{array}{l}{\text { Area }=√(12(12-5)(12-8)(12-11))} \\ {=√(12(7)(4)(1))} \\ {=\sqrt{4^(2) * 3 * 7}=4 √(21) \text { sq units. }}\end{array}](https://img.qammunity.org/2020/formulas/mathematics/middle-school/uyfs5tzydli595tuwl14ebun6dzj7cddxf.png)
Thus the area of the triangle with sides a=5, b=8 and c=11 is
![4 √(21) \text { square units. }](https://img.qammunity.org/2020/formulas/mathematics/middle-school/pgjrexe3zlqzcfgvwes8i47s948b3p2l2p.png)