101,625 views
41 votes
41 votes
F(x) = x³ + 2x - 1, a = -4
(f⁻¹)′( - 4) = ?

User Darcara
by
2.2k points

1 Answer

14 votes
14 votes

Recall the inverse function theorem. If
f is invertible and differentiable in all the right places, then


f^(-1)\bigg(f(x)\bigg) = x \\\\ ~~~~~~~~ \implies \left(f^(-1)\right)'\bigg(f(x)\bigg) f'(x) = 1 \\\\ ~~~~~~~~ \implies \left(f^(-1)\right)'\bigg(f(x)\bigg) = \frac1{f'(x)} \\\\ ~~~~~~~~ \implies \left(f^(-1)\right)'(x) = \frac1{f'\left(f^(-1)(x)\right)} \\\\ ~~~~~~~~ \implies \left(f^(-1)\right)'(-4) = \frac1{f'\left(f^(-1)(-4)\right)}

Solve for
x such that
f(x)=-4.


x^3 + 2x - 1 = -4 \\\\ x^3 + 2x + 3 = 0 \\\\ (x + 1) (x^2 - x + 3) = 0


x^2-x+3=0 has non-real solutions, so we're left with


x+1 = 0 \implies x = -1

Then we have


f(-1) = -4 \implies f^(-1)(-4) = -1 \implies \left(f^(-1)\right)' (-4) = \frac1{f'(-1)} = \boxed{\frac15}

since


f(x) = x^3 + 2x - 1 \implies f'(x) = 3x^2 + 2 \implies f'(-1)=5

User AndreG
by
2.4k points