Answer:
Step-by-step explanation:
We know that , for an object to remain in circular motion , a force towards centre is required which is called centripetal force. In the circular motion of
satellites around planet , this force is provided by the gravitational attraction between satellite and planet.
If M be the mass of planet and m be the mass of satellite, G be gravitational constant and R be the distance between planet and satellite or R be the radius of orbit
Gravitational force = G Mm / R²
If v be the velocity with which satellite is orbiting
centripetal force
= m v² /R
Centripetal force = gravitational attraction
m v² /R = G Mm / R²
v =

Time period = time the satellite takes to make one rotation
= distance / orbital velocity
= 2πR/ v
=

T =
