Answer:
![(g_1)/(g_2)=0.92](https://img.qammunity.org/2020/formulas/geography/college/50ccm1dnfitghc5fnf1ne880tordqs8pk2.png)
Step-by-step explanation:
It is given that,
The radius of Titan,
![r_1=2600\ km=26* 10^5\ m](https://img.qammunity.org/2020/formulas/geography/college/92cyghyj8aa8sddwn7bxv5g2g5o38u485k.png)
Density of Titan,
![d_1=2.1\ g/cm^3=2100\ kg/m^3](https://img.qammunity.org/2020/formulas/geography/college/xvjof8fop9ws42elm8aj0v1sbrra37eugx.png)
Radius of moon,
![r_2=1737\ km=1737* 10^3\ m](https://img.qammunity.org/2020/formulas/geography/college/75pekjqem8zpq86415o0ae7ep42p52zjgo.png)
Density of the moon,
![d_2=3.4\ g/cm^3=3400\ kg/m^3](https://img.qammunity.org/2020/formulas/geography/college/bvqix7zmi1shrnxhv69q92qptuzin2o4n9.png)
Value of gravitational constant,
![G=6.67* 10^(-11)\ m^3kg^(-1)s^(-2)](https://img.qammunity.org/2020/formulas/geography/college/8xbrvkegb6a4e3v9x75cg4kyarkxn6rviu.png)
The gravitational acceleration is given by :
![g=(GM)/(r^2)](https://img.qammunity.org/2020/formulas/physics/college/lg1gzua2rkdz764yijdhy1y7gveuxrqeam.png)
![g=(G* d* \pi r^2)/(r^2)](https://img.qammunity.org/2020/formulas/geography/college/e3fb2eoubww0uq2dz0mewvo7twotrtvqcu.png)
Let g₁ and g₂ are the gravitational acceleration on Titan and on the moon respectively. So,
![(g_1)/(g_2)=((G* d_1* (4/3)\pi r_1^3)/(r_1^2))/((G* d_2* (4/3)\pi r_2^3)/(r_2^2))](https://img.qammunity.org/2020/formulas/geography/college/cayfcwcyqtz9rbg7g62v8wkui3cguyfi7m.png)
![(g_1)/(g_2)=(d_1r_1)/(d_2r_2)](https://img.qammunity.org/2020/formulas/geography/college/tmke5vwurmn018aqfwmp2y9jsrz7zuxemr.png)
![(g_1)/(g_2)=(2100* 26* 10^5)/(3400* 1737* 10^3)](https://img.qammunity.org/2020/formulas/geography/college/9wzx8azvvsoik8ji5hzpsraagybzy3wpe4.png)
![(g_1)/(g_2)=0.92](https://img.qammunity.org/2020/formulas/geography/college/50ccm1dnfitghc5fnf1ne880tordqs8pk2.png)
So, the ratio of gravitational acceleration on Titan compared to that on the Moon is 0.92 : 1. Hence, this is the required solution.