Answer:
a line labeled g of x that passes through points negative 1, negative 2 and 0, 2
Explanation:
we have
![f(x)=4x-2](https://img.qammunity.org/2020/formulas/mathematics/middle-school/d085r63vqi7dvttlh4vply4ub08rlo3asa.png)
![g(x)=f(x+1)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/j3mauurzz9qybgcs9x84z92pp8y3vy1x00.png)
To determine g(x), substitute the variable x by (x+1) in the function f(x)
so
![f(x+1)=4(x+1)-2](https://img.qammunity.org/2020/formulas/mathematics/middle-school/bzzcoi4rtjsfkvr24z41ewo7jzuyo4iqz5.png)
![f(x+1)=4x+4-2](https://img.qammunity.org/2020/formulas/mathematics/middle-school/ty4d9orajtnuisk5sbgcabe5kaspetnmzt.png)
![f(x+1)=4x+2](https://img.qammunity.org/2020/formulas/mathematics/middle-school/4v9k9l54fxb4na2d4q01fju6ilkb35ux5m.png)
![g(x)=f(x+1)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/j3mauurzz9qybgcs9x84z92pp8y3vy1x00.png)
![g(x)=4x+2](https://img.qammunity.org/2020/formulas/mathematics/middle-school/vo2mhecygiuws5owykxthi0k635zs8w6uj.png)
therefore
a line labeled g of x that passes through points negative 1, negative 2 and 0, 2