Answer:
The probability that a repair time exceeds 8 hours is
![P(X>8)\approx 0.000746586](https://img.qammunity.org/2020/formulas/mathematics/college/5mik05fv12l13r8xzuvaglad984tfoyra3.png)
The conditional probability that a repair takes at least 13 hours, given that it takes more than 9 hours is
![P(X\geq 13 | X>9)\approx 0.0273237376](https://img.qammunity.org/2020/formulas/mathematics/college/x7kk80wobqcy6ibjea3rbo8lt94gb61m1x.png)
Explanation:
A continuous random variable X is said to have an exponential distribution with parameter
shown as
, if its probability density function is given by
![f_X(x)=\begin{cases}\lambda e^(-\lambda x) & x > 0\\ 0 &\text{otherwise}\end{cases}](https://img.qammunity.org/2020/formulas/mathematics/college/ep2e8o6l9e5wr724abua49538gl04qv3eu.png)
Let X denote the time require to repair a machine.
(a) The probability that a repair time exceeds 8 hours;
![P(X>8)=1-P(X\leq 8)\\P(X>8)=1-\int\limits^8_0 {0.9e^(-0.9x)} \, dx \\P(X>8)=1-0.999253\\P(X>8)\approx 0.000746586](https://img.qammunity.org/2020/formulas/mathematics/college/r2onadn967uie9piumw0nczxt9lejoh740.png)
(b) The conditional probability that a repair takes at least 13 hours, given that it takes more than 9 hours;
We want to find
.
![P(X\geq 13 | X>9)=(P(X\geq 13))/(P(X>9)) \\\\P(X\geq 13 | X>9)=\frac{\int\limits^(\infty)_(13) {0.9e^(-0.9x)} \, dx}{\int\limits^(\infty)_(9) {0.9e^(-0.9x)} \, dx}\\ \\P(X\geq 13 | X>9)=(8.29382*10^(-6))/(0.000303539) \\\\P(X\geq 13 | X>9)\approx 0.0273237376](https://img.qammunity.org/2020/formulas/mathematics/college/miwdycsvhbomaup9r7vvgq35zh4g1jz3j6.png)