Answer:
![\large \boxed{\text{(a) 7.800 Hz; (b) 20.3 m/s; 40.6 m/s; 60.8 m/s}}](https://img.qammunity.org/2020/formulas/physics/college/vvptfvt6pd98tpwbtujdag92eu76u6v3tr.png)
Step-by-step explanation:
a) Fundamental frequency
A harmonic is an integral multiple of the fundamental frequency.
![\frac{\text{23.40 Hz}}{\text{15.60 Hz}} = (1.500)/(1) \approx (3)/(2)](https://img.qammunity.org/2020/formulas/physics/college/9mxpd5ewqk9uizbt5m7ar9g243qh6sl18q.png)
![f = \frac{\text{24.30 Hz}}{3} = \textbf{7.800 Hz}](https://img.qammunity.org/2020/formulas/physics/college/6dse0fljvotuyswtbe51bg3iwnfmfqda6s.png)
b) Wave speed
(i) Calculate the wavelength
In a fundamental vibration, the length of the string is half the wavelength.
![\begin{array}{rcl}L & = & (\lambda)/(2)\\\\\text{1.30 m} & = & (\lambda)/(2)\\\\\lambda & = & \text{2.60 m}\\\end{array}](https://img.qammunity.org/2020/formulas/physics/college/421ka8pwenvauffja7dueqsuzttc9kwys3.png)
(b) Calculate the speed s
![\begin{array}{rcl}v_(1)& = & f_(1)\lambda\\& = & \text{7.800 s}^(-1) * \text{2.60 m}\\& = & \textbf{20.3 m/s}\\\end{array}](https://img.qammunity.org/2020/formulas/physics/college/5red6oqkg5g8cgpiquimctz2kmx7hzmi1b.png)
![\begin{array}{rcl}v_(2)& = & f_(2)\lambda\\& = & \text{15.60 s}^(-1) * \text{2.60 m}\\& = & \textbf{40.6 m/s}\\\end{array}](https://img.qammunity.org/2020/formulas/physics/college/nk9t7aehzyv23ocvxu4wgfpl0sx2u0kby1.png)
![\begin{array}{rcl}v_(3)& = & f_(3)\lambda\\& = & \text{23.40 s}^(-1) * \text{2.60 m}\\& = & \textbf{60.8 m/s}\\\end{array}](https://img.qammunity.org/2020/formulas/physics/college/fpzwku0ts0kdv8dp2zdkiqmdbc28po0osa.png)