Answer : The pressure inside the bottle is 49.2 atm
Explanation :
First we have to calculate the mass of helium.
![\text{Mass of helium}=\text{Density of helium}* \text{Volume of helium}=0.147g/mL* 130.0mL=19.11g](https://img.qammunity.org/2020/formulas/chemistry/college/gp81wrycxn59ejx3dgskeyzjfqj1xih94k.png)
Now we have to calculate the moles of helium.
![\text{Moles of helium}=\frac{\text{Mass of helium}}{\text{Molar mass of helium}}=(19.11g)/(4.00g/mol)=4.78mole](https://img.qammunity.org/2020/formulas/chemistry/college/12gprbi5phv9vs4tiafzivjjey1swj1l7x.png)
Now we have to calculate the moles of air in the container.
Using ideal gas equation :
PV = nRT
where,
P = Pressure of air = 1.0 atm
V = Volume of air = 2.50 L
n = number of moles of air = ?
R = Gas constant =
![0.0821L.atm/mol.K](https://img.qammunity.org/2020/formulas/chemistry/college/5zvq0f7pgwte188xm3wc67cw5792ay2fa4.png)
T = Temperature of air = 125 K
Putting values in above equation, we get:
![1.0atm* 2.50L=n* 0.0821L.atm/mol.K* 125K\\\\n=0.24](https://img.qammunity.org/2020/formulas/chemistry/college/zvzdy24bzohf9bilsp5uls770n5kix3x4b.png)
Now we have to calculate the pressure of individual components at
.
Pressure of helium:
![P_(He)=(nRT)/(V)](https://img.qammunity.org/2020/formulas/chemistry/college/asj6ikc3hgu3feqtucwpjbzmf0vp9bf9uv.png)
![P_(He)=((4.78mol)* (0.0821L.atm/mol.K)* (298K))/(2.50L)=46.8atm](https://img.qammunity.org/2020/formulas/chemistry/college/8v3y9m3ss6prbhd9cy0e4faprrjqpynatw.png)
Pressure of air :
![P_(air)=(nRT)/(V)](https://img.qammunity.org/2020/formulas/chemistry/college/7hl9pyd1b33u6hcanr15hf3q97hf0k9rz5.png)
![P_(air)=((0.24mol)* (0.0821L.atm/mol.K)* (298K))/(2.50L)=2.4atm](https://img.qammunity.org/2020/formulas/chemistry/college/j0dnka7n34hcszajm5jlesmyep8aty6nco.png)
The overall pressure =
![P_(He)+P_(air)=46.8+2.4=49.2atm](https://img.qammunity.org/2020/formulas/chemistry/college/k897h61mo0y8nlzke5ck8lr1260x0mc00g.png)
Therefore, the pressure inside the bottle is 49.2 atm