Answer:
2
Explanation:
You want to know the average rate of change on the interval -8 ≤ x ≤ -7 of the cubic function shown in the graph.
Average rate of change
The average rate of change of a function f(x) on interval [a, b] is given by ...
rate of change = (f(b) -f(a))/(b -a)
Here, we have ...
- a = -8
- b = -7
- f(-8) = 0
- f(-7) = 2
Using these values in the formula for rate of change, we get ...
rate of change = (2 -0)/(-7 -(-8)) = 2/1 = 2
The average rate of change of f(x) on [-8, -7] is 2.