Answer:
Radius = 9.0216 cm
Step-by-step explanation:
Given that:
The critical mass of neptunium-237 = 60 kg
Also, 1 kg = 1000 g
So mass = 60000 g
Density = 19.5 g/cm³
Volume = ?
So, volume:
The volume of the material = 3076.92308 cm³
The expression for the volume of the sphere is:
![V=\frac {4}{3}* \pi* {(radius)}^3](https://img.qammunity.org/2020/formulas/physics/high-school/pwx409gntinb596bipildix8ywf0605zyq.png)
![3076.92308=(4)/(3)* (22)/(7)* {(radius)}^3](https://img.qammunity.org/2020/formulas/physics/high-school/z7b07z3l94bjprkvewi1y0zhg0obggrfqs.png)
![(4)/(3)* (22)/(7)* {(radius)}^3=3076.92308](https://img.qammunity.org/2020/formulas/physics/high-school/5g7khcwyqvw4153ah9r1irmgfgfq4zymwu.png)
![88* {(radius)}^3=64615.38468](https://img.qammunity.org/2020/formulas/physics/high-school/8rf7oln5vl708c6qci4pk87w7p4fkol4xy.png)
![{(radius)}=\sqrt[3]{(64615.38468)/(88)}](https://img.qammunity.org/2020/formulas/physics/high-school/248kwf67i2h2bxg4wpft464t3rmebsrs8i.png)
Radius = 9.0216 cm