224k views
5 votes
The expression (secx + tanx)2 is the same as _____.

User ElderMael
by
7.3k points

1 Answer

4 votes

Answer:

The expression
\bold{(\sec x+\tan x)^(2) \text { is same as } (1+\sin x)/(1-\sin x)}

Solution:

From question, given that
\bold{(\sec x+\tan x)^(2)}

By using the trigonometric identity
(a + b)^(2) = a^(2) + 2ab + b^(2) the above equation becomes,


(\sec x+\tan x)^(2) = \sec ^(2) x+2 \sec x \tan x+\tan ^(2) x

We know that
\sec x=(1)/(\cos x) ; \tan x=(\sin x)/(\cos x)


(\sec x+\tan x)^(2)=(1)/(\cos ^(2) x)+2 (1)/(\cos x) (\sin x)/(\cos x)+(\sin ^(2) x)/(\cos ^(2) x)


=(1)/(\cos ^(2) x)+(2 \sin x)/(\cos ^(2) x)+(\sin ^(2) x)/(\cos ^(2) x)

On simplication we get


=(1+2 \sin x+\sin ^(2) x)/(\cos ^(2) x)

By using the trigonometric identity
\cos ^(2) x=1-\sin ^(2) x ,the above equation becomes


=(1+2 \sin x+\sin ^(2) x)/(1-\sin ^(2) x)

By using the trigonometric identity
(a+b)^(2)=a^(2)+2ab+b^(2)

we get
1+2 \sin x+\sin ^(2) x=(1+\sin x)^(2)


=((1+\sin x)^(2))/(1-\sin ^(2) x)


=((1+\sin x)(1+\sin x))/(1-\sin ^(2) x)

By using the trigonometric identity
a^(2)-b^(2)=(a+b)(a-b) we get
1-\sin ^(2) x=(1+\sin x)(1-\sin x)


=((1+\sin x)(1+\sin x))/((1+\sin x)(1-\sin x))


= (1+\sin x)/(1-\sin x)

Hence the expression
\bold{(\sec x+\tan x)^(2) \text { is same as } (1+\sin x)/(1-\sin x)}

User PW Kad
by
6.8k points