209k views
1 vote
Complete the identity.
sec 0 - sece =?
Any one can please help me?

1 Answer

3 votes

Answer:


(\sin^2(\theta))/(\cos(\theta))

Explanation:


\sec(\theta)-(1)/(\sec(\theta))

Write first term as a fraction:


(\sec(\theta))/(1)-(1)/(\sec(\theta))

Multiply first fraction by
1=(\sec(\theta))/(\sec(\theta)):


(\sec^2(\theta)-1)/(\sec(\theta))

Use Pythagoren Identity,
\tan^2(\theta)+1=\sec^2(\theta):


(\tan^2(\theta))/(\sec(\theta))

Rewrite using quotient identity,
(\sin(\theta))/(\cos(\theta))=\tan(\theta), and recirpocal identity,
(1)/(\cos(\theta))=\sec(\theta):


((\sin^2(\theta))/(\cos^2(\theta)))/((1)/(\cos(\theta)))

A factor of
(1)/(\cos(\theta)) cancels:


(\sin^2(\theta))/(\cos(\theta))

User Ivan Uemlianin
by
5.4k points