174k views
5 votes
Slope of these points of x:13,14,15,16 and y:11,6,1,-4

User Stamm
by
5.3k points

2 Answers

1 vote


\bf \begin{array} \cline{1-2} x&y\\ \cline{1-2} 13&11\\ 14&6\\ 15&1\\ 16&-4 &\\ \cline{1-2} \end{array} \begin{array}{llll} \textit{using these points}\\\\ \leftarrow \\\\ \leftarrow \end{array}~\hfill (\stackrel{x_1}{14}~,~\stackrel{y_1}{6})\qquad (\stackrel{x_2}{16}~,~\stackrel{y_2}{-4}) \\\\\\ \stackrel{slope}{m}\implies \cfrac{\stackrel{rise} {\stackrel{y_2}{-4}-\stackrel{y1}{6}}}{\underset{run} {\underset{x_2}{16}-\underset{x_1}{14}}}\implies \cfrac{-10}{2}\implies -5

User Misagh Aghakhani
by
4.7k points
5 votes

Answer:

slope is -5

Explanation:

slope =
(y_(2) -y_(1))/(x_(2) -x_(1))

Plug in two points

User Sachin Gandhwani
by
4.6k points