Answer:
You need to add 109,2g of NH₄Cl.
Step-by-step explanation:
To calculate the pH in a buffer you can use Henderson-Hasselbalch formula:
pH = pka + log₁₀
![([base])/([acid])](https://img.qammunity.org/2020/formulas/chemistry/college/krh5qwtsqug0zkf7ijjluidrdnc5ezj6li.png)
1. ka of 1,8x10⁻⁵ ≡ 4,74
pH = 4,74 + log₁₀
= 3,74
pH = 4,74 + log₁₀
= 4,74
pH = 4,74 + log₁₀
= 5,74
2. Using:
pOH = pkb + log₁₀
![([acid])/([base])](https://img.qammunity.org/2020/formulas/chemistry/college/beny7i3hcgjs15b4mknku797ck8w2j8u5u.png)
A pH of 8,89 is a pOH of 14-8,89 = 5,11
Thus:
5,11 = 4,74 + log₁₀
![([acid])/([base])](https://img.qammunity.org/2020/formulas/chemistry/college/beny7i3hcgjs15b4mknku797ck8w2j8u5u.png)
2,32 =
![([acid])/([base])](https://img.qammunity.org/2020/formulas/chemistry/college/beny7i3hcgjs15b4mknku797ck8w2j8u5u.png)
The moles of ammonia (base) are:
2,20L × 0,400M = 0,88 moles
Replacing:
2,32 =
![([acid])/([0,88])](https://img.qammunity.org/2020/formulas/chemistry/college/2upg7ypvkzvavht68rwlt0dp6nvjifg4fp.png)
[acid] = 2,0416 moles of NH₄Cl ₓ (53,491g/mol) = 109,2 g of NH₄Cl
You need to add 109,2g of NH₄Cl.
I hope it helps!