Answer:
Release of electrons from reducing powers to O2 via four protein complexes allows release of small amount of energy at each step and makes the process energy efficient.
Step-by-step explanation:
If NADH and FADH2 would reduce O2 directly, a large amount of energy would have been released in a single step. On the other hand, oxidation of these reducing powers through a series of electron carrier release a small amount of energy at each step which in turn is temporarily stored in form of proton motive force across the inner mitochondrial membrane.
Transfer of a pair of the electron to O2 pumps four protons by complex I, four by complex III and two by complex IV. The resultant proton motive force effectively stores the energy of electron transfer. This energy is then used to drive ATP synthesis.