Step-by-step explanation:
It is given that,
Speed of the person, v = 3 mile/hr = 1.34 m/s
Speed of the truck, v' = 65 mile/hr = 29.05 m/s
(a) Since,
![\beta =(v)/(c)](https://img.qammunity.org/2020/formulas/physics/college/kfzhy1aro9rqkpdtu6vul0ybmlswba6kqn.png)
For the person,
For the truck,
(b) The relativistic factor is given by :
![\gamma=(1)/(√(1-\beta^2))](https://img.qammunity.org/2020/formulas/physics/college/q46v5ef6472wtk4nyonb6xm8r5hpx1m88p.png)
For very small velocity,
![\beta<<1](https://img.qammunity.org/2020/formulas/physics/college/igaij559f018kfcmi2g9vfmjx15lpxoash.png)
![\gamma=(1-\beta ^2)^(-1/2)\approx 1+(1)/(2)\beta ^2](https://img.qammunity.org/2020/formulas/physics/college/e7og89jblwwoye8bl9pb2bwh23j26dz28r.png)
![\gamma-1=(\beta^2)/(2)](https://img.qammunity.org/2020/formulas/physics/college/z7qa168qw4lyvl269j3qt0w2mqrvsdeo70.png)
For the person :
![\gamma-1=((4.47* 10^(-9))^2)/(2)=9.99* 10^(-18)](https://img.qammunity.org/2020/formulas/physics/college/y9khzb6vck8h863vjta8bp9m1wkyqi7mus.png)
For the person :
![\gamma-1=((9.68* 10^(-8))^2)/(2)=4.68* 10^(-15)](https://img.qammunity.org/2020/formulas/physics/college/6tmx0jktntml6w2e4vivorm28gwtf54iwa.png)
Hence, this is the required solution.