58.9k views
4 votes
F(prime)(t) = t^2 (1+f(t))

f(0) = 3

f(t) = ?

User DeeV
by
6.5k points

1 Answer

3 votes

Answer:
F(t) = 4 e ^ {(t^(3) )/(3)}-1

Explanation:


F'(t) = t^(2) (1+ F(t))


(dF)/(dt) = t^(2) (1+F)

First, we separated the variables:


(dF)/(1+F) = t^(2) dt

We integrate:


\int\limits^(F(t))_(F(0)) {(1)/(1+F') } \, dF' = \int\limits^t_0 {t'^(3)} \, dt

We change the variable for make more easy the integral:


u = 1+F', du = dF'


\int\limits^{}_{} {(1)/(u) } \, du = \int\limits^0_t {t'^(3)} \, dt


ln(u)= (t^(3))/(3)

Now replace with
u = 1+F' and evaluate the limit:


ln(1+F(t)) - ln (1+F(0)) = (t^(3))/(3)

Using properties of natural logarithm


ln(1+F(t))= (t^(3))/(3) + ln(4)

Taking exponential of both sides


e^(ln(1+F(t))) = e ^ {(t^(3) )/(3) + ln4}


e^(ln(1+F(t))) = e ^ {(t^(3) )/(3)}e^(ln4) =e ^ {(t^(3) )/(3)} * 4


1+F(t) = 4 e ^ {(t^(3) )/(3)}


F(t) = 4 e ^ {(t^(3) )/(3)}-1

User Jeffkmeng
by
6.0k points