58.9k views
4 votes
F(prime)(t) = t^2 (1+f(t))

f(0) = 3

f(t) = ?

User DeeV
by
8.5k points

1 Answer

3 votes

Answer:
F(t) = 4 e ^ {(t^(3) )/(3)}-1

Explanation:


F'(t) = t^(2) (1+ F(t))


(dF)/(dt) = t^(2) (1+F)

First, we separated the variables:


(dF)/(1+F) = t^(2) dt

We integrate:


\int\limits^(F(t))_(F(0)) {(1)/(1+F') } \, dF' = \int\limits^t_0 {t'^(3)} \, dt

We change the variable for make more easy the integral:


u = 1+F', du = dF'


\int\limits^{}_{} {(1)/(u) } \, du = \int\limits^0_t {t'^(3)} \, dt


ln(u)= (t^(3))/(3)

Now replace with
u = 1+F' and evaluate the limit:


ln(1+F(t)) - ln (1+F(0)) = (t^(3))/(3)

Using properties of natural logarithm


ln(1+F(t))= (t^(3))/(3) + ln(4)

Taking exponential of both sides


e^(ln(1+F(t))) = e ^ {(t^(3) )/(3) + ln4}


e^(ln(1+F(t))) = e ^ {(t^(3) )/(3)}e^(ln4) =e ^ {(t^(3) )/(3)} * 4


1+F(t) = 4 e ^ {(t^(3) )/(3)}


F(t) = 4 e ^ {(t^(3) )/(3)}-1

User Jeffkmeng
by
8.0k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories