Answer:
![y=-e^(-t)(t+1)+1+(2)/(e)](https://img.qammunity.org/2020/formulas/mathematics/college/uasjfi483lkrp4knpewh4sm5wo4hmy4n6c.png)
Explanation:
The given differential equation is
![y'(t)=te^(-t)](https://img.qammunity.org/2020/formulas/mathematics/college/ff84g7wu8zms3q16kqd53mk1z4jbpegl3s.png)
It can be written as
![(dy)/(dt)=te^(-t)](https://img.qammunity.org/2020/formulas/mathematics/college/tsbh89zdldsywupb2zrpw0e8bk5s18tgv9.png)
![dy=te^(-t)dt](https://img.qammunity.org/2020/formulas/mathematics/college/bccbr3mzzhlpn2gffvzp6omzg4lxsp6fr6.png)
Integrate both sides.
![\int dy=\int te^(-t)dt](https://img.qammunity.org/2020/formulas/mathematics/college/nms7ko10xjo6eufuwqebvrvci3yarolhiu.png)
Apply ILATE rule on right side. Here, t is first function and
is the second function.
![y=t\int e^(-t)-\int ((d)/(dt)t\int e^(-t))](https://img.qammunity.org/2020/formulas/mathematics/college/bcyf4zmxwv6cq9672anz1t0nm9f60xm3li.png)
![\int e^(-x)=-e^(-x)+C](https://img.qammunity.org/2020/formulas/mathematics/college/z3ltiuq7iayes12o8jakiz67qdfke2y77j.png)
![y=-te^(-t)+\int e^(-t)](https://img.qammunity.org/2020/formulas/mathematics/college/grtngmn00jn60t4u9sdoj93kwc1jf3gsu0.png)
.... (1)
Initial condition is y(1) = 1. It means at t=1 the value of y is 1.
![1=-e^(-1)-e^(-1)+C](https://img.qammunity.org/2020/formulas/mathematics/college/g5ch7za19q0ckk5wsngs82rtjabf30irxc.png)
![1=-2e^(-1)+C](https://img.qammunity.org/2020/formulas/mathematics/college/5racwp5hz2wlodw59k4qesenmu8ofq33ts.png)
![1=-(2)/(e)+C](https://img.qammunity.org/2020/formulas/mathematics/college/2bkslomf2ubiyapmi8l4ipuj66367huwe7.png)
Add
on both sides.
![1+(2)/(e)=C](https://img.qammunity.org/2020/formulas/mathematics/college/llml33dayvupq34kscvu7uf7cpwb5ub9le.png)
Substitute the value of C in equation (1).
![y=-te^(-t)-e^(-t)+1+(2)/(e)](https://img.qammunity.org/2020/formulas/mathematics/college/77rwq92kkmvt2ih409vr7s3cuz4bb75u53.png)
![y=-e^(-t)(t+1)+1+(2)/(e)](https://img.qammunity.org/2020/formulas/mathematics/college/uasjfi483lkrp4knpewh4sm5wo4hmy4n6c.png)
Therefore, the solution of given initial value problem is
.