Answer:
![q=2](https://img.qammunity.org/2020/formulas/mathematics/college/y1ho8j1dougup16v8gyztwirsclscglroq.png)
Explanation:
We need to find the quantity demanded if the price of the shed is 1480$. Hence:
![D(q)=1480=-4q^(2)-2q+1500](https://img.qammunity.org/2020/formulas/mathematics/college/10wgyxyw3ilhvnf79iw3rpwjhxv2dexgj1.png)
Sustract 1480 to both sides:
![-4q^(2) -2q+20=0](https://img.qammunity.org/2020/formulas/mathematics/college/lvsqlt2m64douvl7ordf19lurzdwmzuleo.png)
Multiply both sides by
![(-1)/(4)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/jsq3qjmrgjy7ni6yxapjmkzucz0yacvx6t.png)
![q^(2)+(1)/(2)q-5=0](https://img.qammunity.org/2020/formulas/mathematics/college/fw8x37g5v0nis97i70xwl6xvkvaw5p2wet.png)
We have a quadratic equation, we can solve it using the cuadratic formula or simply factoring it:
![(q+(5)/(2))(q-2)](https://img.qammunity.org/2020/formulas/mathematics/college/od0mn53kd28t2xexn0hqyn927zlnoubz5o.png)
Now the solutions are given by:
![q_1=-(5)/(2) \\q_2=2](https://img.qammunity.org/2020/formulas/mathematics/college/s5phm69e0hk9ttlvjcay6kbmcalyn6y9jd.png)
Since we look for a coherent answer we take the positive solution
![q_2](https://img.qammunity.org/2020/formulas/physics/middle-school/sow836l6xe7sxraugw8m1j6r4znuzpp5m3.png)
So the quantity demanded is
![q=2](https://img.qammunity.org/2020/formulas/mathematics/college/y1ho8j1dougup16v8gyztwirsclscglroq.png)