Answer:
A) θmin= 76°.
Step-by-step explanation:
Given that
Speed of cannonball = Vo
Lets take θ is the angle measure from horizontal
We know that
Range R
![R=(V_o^2sin2\theta )/(g)](https://img.qammunity.org/2020/formulas/physics/high-school/4g9v29npqrawzj49q39lx1d9wkahp7ff30.png)
Height h
![h=(V_o^2sin^2\theta )/(2g)](https://img.qammunity.org/2020/formulas/physics/high-school/q1txk6hiridhbnai3054xqj7end6xd7m46.png)
Given that h should be larger than R
h > R
![(V_o^2sin^2\theta )/(2g)>(V_o^2sin2\theta )/(g)](https://img.qammunity.org/2020/formulas/physics/high-school/d1ajv3wvv0jpfn0ianhzabrztb7pov2m68.png)
![{sin^2\theta }>2{sin2\theta }](https://img.qammunity.org/2020/formulas/physics/high-school/2novvx04huxsost8sub80eij7khxxn3eix.png)
![{sin^2\theta }>4{sin\theta\ cos\theta }](https://img.qammunity.org/2020/formulas/physics/high-school/xeu40vvlawpkmmss12x0wdpd68rahtlev5.png)
![{tan\theta }>4](https://img.qammunity.org/2020/formulas/physics/high-school/34kd4krdc52zw1x3s9e7dj2n1k0zkswkz4.png)
θ >75.96°
So minimum angle should be 75.96° or 76°.