Answer:
![\left[\begin{array}{ccc}x1\\x2\\x3\\x4\end{array}\right] =\left[\begin{array}{ccc}4\\2\\2\\3\end{array}\right]](https://img.qammunity.org/2020/formulas/mathematics/college/wpd6x0n9qqvndmj2m5dguvkznvvpld11gl.png)
4KO2 + 2CO2 → 2K2CO3 + 3O2
Explanation:
First we write the reaction in the asked form :
x1 KO2 + x2 CO2 → x3 K2CO3 + x4 O2
In a chemical equation, tha amount of substance that react is the same amount that is formed :
On each side of the equation we must have the same amount of K,C and O.
Let's write this in equations :
K balance :

C balance :

O balance :

The linear equations system is :

Let's equal to 0 to obtain a homogeneous equations system (for convenience) :

Let's work with the extended system matrix :
![\left[\begin{array}{ccccc}1&0&-2&0&0\\2&2&-3&-2&0\\0&1&-1&0&0\end{array}\right]](https://img.qammunity.org/2020/formulas/mathematics/college/4f4t95hkzx2pvj5jimiopmtmvmfg0axmhv.png)
Working with the matrix :
![\left[\begin{array}{ccccc}1&0&-2&0&0\\0&2&1&-2&0\\0&1&-1&0&0\end{array}\right]](https://img.qammunity.org/2020/formulas/mathematics/college/g6ssmznez1yzqsq3jq2cspv935pn9nca9r.png)
→
![\left[\begin{array}{ccccc}1&0&-2&0&0\\0&1&1/2&-1&0\\0&1&-1&0&0\end{array}\right]](https://img.qammunity.org/2020/formulas/mathematics/college/8tdfauwbl7su0ym2psh66w0gkk0mrzhlt1.png)
→
![\left[\begin{array}{ccccc}1&0&-2&0&0\\0&1&-1&0&0\\0&1&1/2&-1&0\end{array}\right]](https://img.qammunity.org/2020/formulas/mathematics/college/6tu5ket5xmu35efni56ouu8mlhqrgzbee6.png)
→
![\left[\begin{array}{ccccc}1&0&-2&0&0\\0&1&-1&0&0\\0&0&3/2&-1&0\end{array}\right]](https://img.qammunity.org/2020/formulas/mathematics/college/q3jtskak8pq3lrkzomki59do6uph87iirh.png)
→
![\left[\begin{array}{ccccc}1&0&-2&0&0\\0&1&-1&0&0\\0&0&1&-2/3&0\end{array}\right]](https://img.qammunity.org/2020/formulas/mathematics/college/4xtzgpwkdka8d21stjye9brx24mry233dy.png)
→
![\left[\begin{array}{ccccc}1&0&0&-4/3&0\\0&1&0&-2/3&0\\0&0&1&-2/3&0\end{array}\right]](https://img.qammunity.org/2020/formulas/mathematics/college/eilndt9r60msp6srgxc286k3as929j5z42.png)
The matrix is extended to the following linear system :


![\left[\begin{array}{c}x1&x2&x3&x4\end{array}\right] =\left[\begin{array}{c}(4)/(3) x4&(2)/(3)x4 &(2)/(3)x4 &x4\end{array}\right]](https://img.qammunity.org/2020/formulas/mathematics/college/5z8nipa4p1ykg2ks1uynw2bg9p2jx9gr84.png)
![\left[\begin{array}{c}(4)/(3)&(2)/(3)&(2)/(3)&1 \end{array}\right] x4=\left[\begin{array}{c}(4)/(3)&(2)/(3)&(2)/(3)&1 \end{array}\right]t](https://img.qammunity.org/2020/formulas/mathematics/college/dt27ltzir2f0r2clznhocfnm1l9sv9h5qy.png)
t∈ IR
Let's choose t=3 to eliminate the fractional numbers →
![\left[\begin{array}{c}x1&x2&x3&x4\end{array}\right] = \left[\begin{array}{c}4&2&2&3\end{array}\right]](https://img.qammunity.org/2020/formulas/mathematics/college/tr9uh1076jfw91l8h3w3858g9yjlqvtkob.png)